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Within-trial prediction for the number of future events 
 

Introduction 
In randomized clinical trials, mid-course monitoring of sample size is becoming 

increasingly commonplace and important. For the studies with a failure time outcome, 

sample size estimates depend mainly on the proposed effect of treatment on the 

difference in failure rates, usually measured by the hazard ration, but sample size is 

also dependent on the number of events that will be observed during follow-up which 

depends on the overall failure rate. A departure from the estimated failure rate at the 

design stage may reduce the power unacceptably for a clinically important hazard 

ration. This might be resolved by making appropriate design modifications (usually 

increasing the follow-up time until the enough events are observed). To inform the 

decision about whether and how to make mid-course correction, predicting the number 

of events in the future course of the trial is desirable. 

Prediction has long been recognized as an important practical aspect of interim 

monitoring of randomized clinical trials. It is nature and potentially more accurate to 

make the prediction by using the accumulating data from the trial itself, rather than 

the results from prior trials with similar design. In addition to the point prediction, for 

many applications, it is important to provide lower and upper bounds of the prediction 

(prediction interval) at some specified level of confidence to reflect the uncertainty of 

prediction. 

In this paper, I will present 2 separate approaches to predict the number of events 

for the future course of the trial given the accumulating observed data. Either method 

will estimate prediction intervals by a straightforward simulation. 2 methods will be 

demonstrated with data from a clinical trial of REAL-CAD. 

 

REAL-CAD trial context 
REAL-CAD trial is an ongoing randomized, open-labeled, investigator-initiated, large 

scale clinical trial, of stable CAD (coronary artery disease) patients with 

hypercholesterolemia, comparing the intensive (Pitavastatin, 4 mg/day) and moderate 

(Pitavastatin, 2 mg/day) Statin therapy on cardio-cerebrovascular outcomes. The 

primary endpoint is defined to be a composite of cardiovascular death, nonfatal 

myocardial infarction, nonfatal stroke and hospitalization for unstable angina. This 



trial intended to randomly assign 12600 patients in a 1:1 ratio, as it eventually 

randomized 13054 patients from January 2010 to July 2013. All patients are to be 

followed up until March 2016 to obtain 1033 primary events, which would give the 

study a statistical power of 80% at 2-tailed α level of 0.05, assuming a constant overall 

event rate of 0.025 person-year and an hazard ratio (high/low) throughout follow-up of 

0.84. 

At the time accrual was complete (August 1, 2013), 193 primary events occurred. 

From this data, we found that the overall event rate was approximately 0.009 

person-year, rather than 0.025 as was proposed. Because the planned sample size is 

already quite large and accrual of patients was closed, increasing the sample size is not 

realistic. So we would have to rely on extending follow-up to achieve significance, given 

this much lower event rate than expected would last until the end of follow up period. 

But we also have chance to prove our hypothesis without changing our plan, if overall 

hazard rate is not constant but getting higher with time, and then 1033 required events 

are still possible to reach within the planned follow up period. Or since the assumption 

of constant overall event rate no longer hold and hence, the estimated sample size 

before the study commenced might not so accurate, a smaller sample size instead of 

1033 events may also enable us to detect the treatment difference. 

(A paragraph to be inserted: summarize the review on event rates in the light of 

prior trials to explain possible factors accounting for lower event rates) 

With the context described above, to aid decisions to modify study designs or not, 

firstly we have to be focused on predictions regarding results to be observed in the 

future. 

 

Methods 
The objective is to predict at the future time T* (in this paper, 12, 24 and 32 months 

later. But it can be user-defined.) how many events will occur, that is, how many 

patients who are alive at current time t0 (August 1, 2013) are expected to fail between 

t0 and T*, given the current data.  

Following this objective, .a method like Method A using the survival outcome data 

only, which place the assumption that the survival function is under a parametric 

survival time distribution and prior trial survival data are relevant with distribution 

assumption, can be utilized. Method A can make the prediction simpler, more 

convenient and potentially efficient. But there is concern that the predictions may be 

less reliable if relations between the survival outcome and the other variables 

(covariates) are not extrapolated. To address this concern, the second method – Method 



B, which is incorporating several covariates into the survival model to predict the point 

hazard rate, is also proposed. Convergence of the two methods will add confidence to the 

predictions. 

 
Method A: Bayesian Weibull prediction based on prior survival knowledge combined 

with current survival data 

Unlike the exponential, the two-parameter Weibull distribution describes the hazard 

function increased or decreased over time. Thus, the Weibull, which includes the 

exponential as a special case, can offer a promising compromise position between the 

exponential and nonparametric approaches. 

Assume the event times in the two arms follow 2 independent Weibull distribution 

with the scale parameters ofλ1 andλ2 and the identical shape parameter of α. Then 

the likelihood function in terms of α and λ is as follows: 

 
where n=2 and ν=1/λ. If the arm covariate is linked toλwithλi=xi′βwhere xi is the 

vector of treatment arm corresponding to the ith observation and β is a vector of 

regression coefficients, the log-likelihood function becomes: 

 

Taking advantage of prior survival information, a multivariate normal with mean 

equal to numbers proposed at the design stage are used for intercept and βas our prior. 

Meanwhile, to explore the sensitivity of predictions to the prior, non-informative diffuse 

priors are also applied.  

Informative moderate priors (time unit of month):  

intercept ~ normal(mean= -6.09, sd = 0.60); corresponding to an event rate of 

0.027 person-year in reference group ranged from about 0.008 to 0.090. 

β~normal(mean=-0.1743, sd = 0.125); corresponding to an HR of 0.84 ranged 

from about 0.65 to 1.08. 

α~gamma(shape =4, scale =0.25); corresponding to a shape parameter of 1 

(exponential survival) ranged from about 0 to 2. 

Non-informative diffuse priors: 



intercept ~ normal(mean= 0, var=10000);  

β~normal(mean= 0, var=10000);  

α~gamma(shape = 0.001, inverse scale = 0.001);  

Once the priors are specified, we can resort MCMC (Markov Chain Monte Carlo) 

to get a list of posterior sampled values of (intercept, β, α). Specifically, to simulate 

the values of the numbers of events at T*, the following steps are executed: 

(i) Take the next element from the list of sampled values of (intercept, β, α). 

The scale parameter λ 1 for reference group can be estimated as 

exp(intercept) and then for non-reference group, scale parameter λ2 can 

be estimated as exp(intercept+β). 

(ii) Conditional on the time spent so far and treatment arm, impute event 

times for currently censored subjects given the sampled Weibull 

parameters. 

(iii) Calculate the failure subjects whose expected event time exceeds T*, by 

group. 

By repeating steps (i)–(iii) 1000 times, we obtain a list of values representing a set 

of 1000 draws from the predictive distribution of number of events at T*, while the 5 

and 95 quartiles of this list give the limits of a 90% prediction interval for the predictive 

number of events. 

 

Method B: Assuming a model incorporating several covariates to extrapolate beyond 

survival data (Development is Ongoing.) 

 

Results from a semi-simulated dataset 
Methods are evaluated on a semi-simulated dataset based upon the actual accrual by 

month and the numbers of events up to 31 December, 2012 (140 events) and August 1, 

2013 (193 events). Group data is randomly generated from the Bernoulli distribution 

with p=1/2 and survival times are simulated from 2 exponential distributions for 2 

discrete time grids (~31 December, 2012 and January 1, 2013~ August 1, 2013), 

provided a constant hazard ratio (high/low) of 0.84. 

 

Method A:  

Table 1 Posterior summaries using informative moderate priors 

Standard 95% HPD 

Parameter N Mean Deviation Lower Upper 

alpha 1000 0.9297 0.0618 0.8322 1.0494 



beta0 1000 -6.849 0.213 -7.2531 -6.5016 

beta1 1000 -0.1814 0.0977 -0.3555 -0.00345 

 

Table 2 Posterior summaries using non-informative diffuse priors 

Standard 95% HPD 

Parameter N Mean Deviation Lower Upper 

alpha 1000 0.9592 0.0645 0.8312 1.087 

beta0 1000 -6.9625 0.2065 -7.391 -6.5745 

beta1 1000 -0.1711 0.1377 -0.4065 0.1042 

 

Figure 1 Predictions of the number of events 

 
The vertical lines are 90% prediction intervals, and medians are connected by a line. 

Change of power (log-rank test, two sided α=0.05): informative: 33%→49%→56%; 

non-informative: 30%→46%→52%. 
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