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Within-trial prediction for the number of future events 

進行中の試験におけるイベント発生数の予測 

 

1. Introduction 
In randomized clinical trials, mid-course monitoring of sample size is becoming 

increasingly commonplace and important. For the studies with a failure time outcome, 

sample size estimates depend mainly on the proposed effect of treatment on the 

difference in failure rates, usually measured by the hazard ration, but sample size is 

also dependent on the number of events that will be observed during follow-up which 

depends on the overall failure rate. A departure from the estimated failure rate at the 

design stage may reduce the power unacceptably for a clinically important hazard 

ration. This might be resolved by making appropriate design modifications (usually 

increasing the sample size or extending the follow-up time until the enough events are 

observed). To inform the decision about whether and how to make mid-course correction, 

predicting the number of events in the future course of the trial is desirable. 

Prediction has long been recognized as an important practical aspect of interim 

monitoring of randomized clinical trials. It is nature and potentially more accurate to 

make the prediction by using the accumulating data from the trial itself, rather than 

the results from prior trials with similar design. In addition to the point prediction, for 

many applications, it is important to provide lower and upper bounds of the prediction 

(prediction interval) at some specified level of confidence to reflect the uncertainty of 

prediction. 

Prediction can be performed on the basis of either unblinded or blinded data. In 

the former case, prediction procedures make use of data from the trial including 

information about treatment assignment. In the later case, information about which 

treatment group a patient is assigned to is not identified. In the unblinded case, there is 

considerable concern about inflation of the type I error rate for the trial as a whole and 

manipulation of the trial data if the unblinded result is disclosed. That is the reason 

why regulators seem to favor blinded procedures, as FDA (Food and Drug 

Administration) draft guidance on the topic of sample size re-estimation emphasizes 

that blinded procedures should ‘generally be considered for most studies’ [1]. 

In this paper, we will present 2 separate approaches to predict the number of 

events for the future course of the trial given the accumulating observed data. Either 

method will estimate prediction intervals by a straight-forward simulation. Moreover, 

as an expected blinded sample size re-estimation, we won’t estimate the treatment 
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difference from the ongoing trial data to modify clinically meaningful alternative 

hypothesis for testing. The incentive of my work comes from a clinical trial setting 

which will be described in next section. 

 

2. REAL-CAD trial context 
REAL-CAD trial is an ongoing randomized, open-labeled, investigator-initiated, large 

scale clinical trial, of stable coronary artery disease (CAD) patients with 

hypercholesterolemia, comparing the intensive (Pitavastatin, 4 mg/day) and moderate 

(Pitavastatin, 2 mg/day) Statin therapy on cardio-cerebrovascular outcomes. The 

primary endpoint is defined to be a composite of cardiovascular death, nonfatal 

myocardial infarction, nonfatal stroke and hospitalization for unstable angina [2]. This 

trial intended to randomly assign 12600 patients in a 1:1 ratio, as it eventually 

randomized 13054 patients from January 2010 to July 2013. All patients are to be 

followed up until March 2016 to obtain 1033 primary events, which would give the 

study a statistical power of 80% at 2-tailed α level of 0.05, assuming a constant overall 

event rate of 0.025 person-year and an hazard ratio (high/low) throughout follow-up of 

0.84. A interim analysis is pre-specified to be conducted when approximately 50% of 

1033 required events are reported. Independent Data Monitoring Committee (IDMC) 

will review interim analysis data and make recommendations about whether to 

continue, modify or stop the trial. 

At the time accrual was complete (August 1, 2013), 193 primary events occurred. 

From this data, we found that the overall event rate was approximately 0.009 

person-year, rather than 0.025 as was proposed. Because the planned sample size is 

already quite large and accrual of patients was closed, increasing the sample size is not 

realistic. So we will have to rely on extending follow-up to achieve significance, given 

that this much lower event rate than expected would last until the end of follow up 

period. But we also have chance to prove our hypothesis without changing our plan, if 

overall hazard rate is not constant but getting higher with time, and then 1033 required 

events are still possible to reach within the planned follow up period. Or since the 

assumption of constant overall event rate no longer hold and hence, the estimated 

sample size before the study commenced might not so accurate, a smaller sample size 

instead of 1033 events may also enable us to detect the treatment difference. 

The failure rate used for sample size estimation was based on a few Japan studies 

in hypercholesterolemia and/or CAD patients and with common lipid-lowering 

treatment of statin or eicosapentaenoic acid [3, 4, 5, 6, 7]. These studies indicated that 

the occurrence probability for primary event defined above should be 2~5% per-year. 
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The initial event rate of 2.5% per-year was supposed to be fairly appropriate for 

REAL-CAD study until the first event investigation (September 2012) in which less 

than half of the expected primary events were reported. Meanwhile, LIVES Extension 

[8], CIRCLE [9], COMPACT-CAD [10] and JAPAN-ACS [11] studies revealed more and 

more Japanese evidence about the study drug – pitavastatin, the latest potent statin 

launched in Japan since September 2003 [12] and the USA since June 2010 [13]. These 

results, not available at the initial design stage, suggested that pitavastatin may 

exhibit a more favorable long-term effective profile on lipids than other statin, through 

a mechanism involving a larger increase in HDL-C, a greater reduction on triglycerides 

and an equivalent LDL-C lowering. This may constitute one of the important reasons 

for the much lower event rate in REAL-CAD trial. Besides pitavastatin’s outstanding 

comprehensive effect on plasma lipids, another possible reason worth pointing out is the 

rate of patients who ever underwent coronary revascularization (PCI or CABG) before 

entering the study is over 80% in REAL-CAD, as compared to a rate of almost 50% in 

other studies like TNT study [14]. 

With the context described above, to aid decisions to modify study designs or not, 

firstly we have to be focused on a straight-forward, but accurate prediction of regarding 

events to be observed in the future. 

 

3. Data 
Because we can’t access the REAL-CAD patient-level data when this paper is submitted, 

to demonstrate our methods, we use the real data from another study called N-SAS BC 

05 [15], which is also an ongoing clinical trial with time-to-event as the primary 

outcome. From November 2007 to December 2012, N-SAS BC 05 study enrolled 1697 

patients and reached the 85th primary event up to 18 November 2013. This study is to 

be stopped at December 2017, leading to a maximum follow up period of 11 years. 

 

4. Methods 
The objective is to predict at the future time t (in this paper, 2014/11/18, 2015/11/18, 

2016/11/18 and 2017/12/31. But it can be user-defined.), how many events will occur, 

that is, how many patients who are alive at current time t0 (November 18, 2013) are 

expected to fail between t0 and t, given the current data.  

Following this objective, we consider the methods proposed by Ying GS, Bagiella 

E, Heitjan DF, et al. [16, 17], originally for the unblind setting. The parametric method 

like Method A which place the assumption that the survival function is under a 

parametric survival time distribution and prior trial survival data are relevant with 
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distribution assumption, can be utilized. Method A can make the prediction simpler, 

more convenient and potentially efficient. But there is concern that the predictions may 

be inaccurate if the true underlying distributions differ from those assumed. To address 

this concern, the second method – Method B, which is a nonparametric method that 

combines Kaplan-Meier survival curve point estimation, bayesian bootstrap interval 

and exponential tail, is also proposed. Convergence of the two methods will add 

confidence to the predictions. 

Let si be the failure or censoring time of subject i and let Yi(t) take value 1 if 

patient i is under observation and at risk of failure at time t0, and 0 otherwise. Define 

E(t0, t) to be the conditional expectation, given the data up to t0, of number of events 

that will have been observed by time . Define Q(t0, t) to be the conditional expectation, 

given the data up to t0, of number of events to occur between t0 and t. D(t0) represents 

the number of events that have occurred by time t0. Bagiella and Heitjan [18] showed 

that the conditional expectation of the number of events by time t among subjects at 

risk at time t0 is 
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Thus,  

, t)Q(t)D(t, t)E(t 000                            (2) 

 

Method A: Bayesian Weibull prediction based on prior survival knowledge combined 

with current survival data 

Unlike the exponential, the two-parameter Weibull distribution [19] describes the 

hazard function increased or decreased over time. Thus, the Weibull, which includes the 

exponential as a special case, can offer a promising compromise position between the 

exponential and nonparametric approaches. 

Suppose we have a sample {t} following an Weibull distribution with the scale 

parameters ofλand the shape parameter of α. We can compute the cumulative hazard 

function - F(t) using the maximum likelihood parameters estimated from the data up to 

t0, as F(t)=1-exp(-(t/λ)α). Meantime the likelihood function in terms of α and λ is as 

follows [20]: 

[Formula to be inserted] 

Taking advantage of prior survival information, a multivariate normal with mean 

equal to numbers proposed at the design stage are used for intercept and βas our 

priors. Meanwhile, to explore the sensitivity of predictions to the prior, non-informative 

diffuse priors are also applied.  
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Informative moderate priors (time unit of month):  

intercept ~ normal(mean= -4.2, sd = 0.20); corresponding to an event rate of 

0.015 person-year ranged from about 0.010 to 0.022. 

α~gamma(shape =4, scale =0.25); corresponding to a shape parameter of 1 

(exponential survival) ranged from about 0 to 2. 

Non-informative diffuse priors: 

intercept ~ normal(mean= 0, var=10000);  

α~gamma(shape = 0.001, inverse scale = 0.001);  

Once the priors are specified, we can resort MCMC (Markov Chain Monte Carlo) 

to get a list of posterior sampled values of (intercept,α). Specifically, to simulate the 

values of the numbers of events at t, the following steps are executed: 

(i) Take the next element from the list of sampled values of (intercept, α). 

The scale parameterλcan be estimated as exp(-intercept). 

(ii) Conditional on the time spent so far and treatment arm, impute event 

times for currently censored subjects given the sampled Weibull 

parameters. 

(iii) Calculate the failure subjects whose expected event time exceeds t. 

By repeating steps (i)–(iii) 1000 times, we obtain a list of values representing a set 

of 1000 draws from the predictive distribution of number of events at T*, while the 5 

and 95 quartiles of this list give the limits of a 90% prediction interval for the predictive 

number of events. 

 

Method B: Nonparametric prediction in combination with Kaplan-Meier survival curve 

point estimation, bayesian bootstrap interval and exponential tail 

In contrast to the Weibull parametric distribution, with Method B, F(t) in Equation (1) 

can be estimated nonparametrically by the Kaplan-Meier survival estimator with 

F(t)=1-S(t), where S(t) is survival function. The densities f(t) from the data up to t0, can 

be estimated as the change of S(t) during small time interval divided by the length of 

that time interval. 

To generate the prediction interval, the following steps are performed: 

(i) Creat a Bayesian bootstrap sample from the data available by t0. 

(ii) Make Kaplan-Meier curves for the times to event in the bootstrapped data. 

(iii) Generate event times for subjects alive and on study at t0, conditional on 

survival time exceeding the time already observed. 

(iv) Calculate the failure subjects whose expected event time exceeds t. 

By repeating steps (i)–(iv) 1000 times, we obtain a list of 1000 E(t0, t). Then the 
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predictive interval is calculated from the 5 and 95 quartiles of this list. 

A potential problem with Kaplan-Meier estimator is that it is not well defined for 

time points exceeding the largest failure time. A solution to this problem is to append an 

exponential tail that declines to zero. Again using the maximum likelihood parameters 

estimated from the data up to t0, F(t) for time points exceeding the largest failure time 

are estimated by F(t)=1-exp(-λt). 

 

5. Results 
As shown in slides. 

 

6. Discussion 
Ongoing 

 

7. Conclusion 
Ongoing 
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